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Abstract
The continuum limit is an effective method for
modeling complex discrete structures such as
deep neural networks to facilitate their inter-
pretability. The continuum limits of deep net-
works are investigated with respect to two di-
rections: width and depth. The width contin-
uum limit is a limit of the linear combination
of functions, or a continuous model of the shal-
low structure. We can understand that what shal-
low networks do is the ridgelet expansion of
their approximating functions. The depth contin-
uum limit is a limit of the composition of func-
tions, or a continuous model of the deep struc-
ture. We can understand that what deep networks
do is to transport mass to decrease a certain po-
tential functional F of the data distribution. A
discretization method can potentially replace the
backpropagation. Specifically, we can synthe-
size a deep neural network from broken line ap-
proximation and numerical integration of a dou-
ble continuum model, without backpropagation.
In this study-in-progress, we have developed the
ridgelet transform for potential field, and synthe-
sized an autoencoder without backpropagation.
In this paper, we review recent developments of
the width and depth continuum limits, introduce
our results, and present future challenges.

1. Depth Continuum Limit
The continuum limit with respect to depth is a recently de-
veloped technique. It is a continuum analogy of the deep
neural network, formulated as a formal limit of the compo-
sition of functions as below:

φL ◦ · · · ◦ φ1(x) → φt=T (x), (1)

where φ` : H` → H`+1 (` = 1, . . . , L) with feature vector
space H` is a feature map defined by the `-th hidden layer,

*Equal contribution 1Waseda University, Tokyo, Japan. Corre-
spondence to: Sho Sonoda <sho.sonoda@aoni.waseda.jp>.

Presented at the ICML 2017 Workshop on Principled Approaches
to Deep Learning, Sydney, Australia, 2017. Copyright 2017 by
the author(s).

and φt : Rm → Rm (t ∈ [0, T ]) is a continuous analog
of φ`’s. In the following subsections, we identify φt as a
transport map with depth as time variable t. We then obtain
a finite deep neural network as a broken line approximation
of trajectory t 7→ φt(x).

The dynamical system viewpoint is not new to recurrent
neural networks (Seung, 1998). These days, distribution-
based formulations of deep neural networks are success-
ful. For example, they are generative density estimators
(Bengio et al., 2013), variational autoencoder (Kingma &
Welling, 2014), reverse diffusion process (Sohl-Dickstein
et al., 2015) and adversarial generative networks (Goodfel-
low et al., 2014). In shrinkage statistics, the expression of
“transport map” x+ f(x) is known as Brown’s representa-
tion of posterior (George et al., 2006). Liu & Wang (2016)
analyzed it from a Bayesian viewpoint, apart from deep
learning, and proposed kernel Stein discrepancy. Recently,
we have observed that some kinds of convolutional net-
works can also be regarded as transport maps. Specifically,
the skip connection structure x+f(x) used in highway net-
works (Srivastava et al., 2015) and ResNet (He et al., 2016)
is formally understood as a transport map.

1.1. Wasserstein Gradient Flow of Deep Network

Consider a transport map defined by a velocity vector field

∂tφt(x) = ∇Vt(φt(x)), x ∈ Rm (2)

with time-dependent potential function Vt : Rm → R,
where ∇ denotes the gradient operator on Rm. When t
is small, it has an “explicit” expression

φt(x) = x+ t∇Vt(x) + o(t2) as t→ 0. (3)

Generally, (2) is rewritten as an integral equation

φt(x) = x+

∫ t

0

∇Vs(φs(x))ds,

however the explicit solution is rarely tractable.

An important example of (2) is the Gaussian denoising
autoencoder (DAE), where Alain & Bengio (2014) deter-
mined that φt(x) = x + t∇ logµt(x) + o(t2) as t → 0
with data distribution µt. See Sonoda & Murata (2016) for
transport theoretic reformulation of the DAE.
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Associated with a transport map, we consider data distribu-
tions. We write by µ0 the initial state of the data distribu-
tion, or the probability density function of the input data x;
and by µt its pushforward φt]µ0, or the probability density
function of the “feature vector” φt(x). That is, x ∼ µ0 and

φt(x) ∼ µt(:= φt]µ0.)

Recall that a mass transportation is a change of variables,
thus the pushforward measure µt satisfies the following
equation

µt(φt(x)) |∇φt(x)| = µ0(x), t ≤ 0, x ∈ Rm. (4)

As time t evolves, the data distribution µt changes accord-
ing to the continuity equation

∂tµt(x) = −∇ · [µt(x)∇Vt(x)], x ∈ Rm (5)

where ∇· denotes the divergence operator on Rm. The
proof is simply to calculate the change of variables for-
mula (4). This result is intuitively reasonable because the
term∇V in (2) corresponds to a flux from the viewpoint of
hydrodynamics.

The continuity equation (5) has no explicit solution ei-
ther, except for some special cases such as heat equation
(Vt = − logµt). According to Otto calculus (Villani, 2009,
Ex.15.10), the solution µt coincides with a trajectory of the
Wasserstein gradient flow

d

dt
µt = −gradF [µt], (6)

with respect to a potential functional F that satisfies the
following equation:

d

dt
F [µt] =

∫
Rm

Vt(x)[∂tµt](x)dx.

Here grad denotes the gradient operator on L2-Wasserstein
space W2(Rm).

The L2-Wasserstein space W2(Rm) is a functional mani-
fold, or the family of probability density functions on Rm
equipped with an infinite-dimensional Riemannian metric
called the L2-Wasserstein metric. While (6) is an ordinary
differential equation on the space W2(Rm) of probability
density functions, (5) is a partial differential equation on
Euclidean space Rm. Hence, we use different time deriva-
tives d

dt and ∂t.

The Wasserstein gradient flow (6) possesses a distinct ad-
vantage that the potential functional F does not depend on
time t. In the following subsections, we will see that both
the Boltzmann and Renyi entropy are examples of F . The
Wasserstein gradient flow facilitate the interpretability of
deep neural networks because we can understand a deep
network as a transport map φt that transports mass to de-
crease the quantity F [µt] of the data distribution.

1.2. Example: Gaussian DAE

Sonoda & Murata (2016) determined that data distribution
µt of the Gaussian DAE evolves according to the backward
heat equation

∂tµt(x) = −4µt(x), µt=0 = µ0

and concluded that the feature map of the Gaussian DAE
is equivalent to a transport map that decreases the entropy
H[µ] := −

∫
µ(x) logµ(x)dx of the data distribution:

d

dt
µt = −gradH[µt], µt=0 = µ0,

where 4 denotes the Laplacian on Rm. This is immediate
because when F = H, then V = − logµt and thus

gradH[µt] = ∇ · [µt∇ logµt] = ∇ ·
[
µt
∇µt
µt

]
= 4µt,

which means (5) reduces to the backward heat equation.

1.3. Example: Renyi Entropy

Similarly, when F is the Renyi entropy

Hα[µ] :=
∫
Rm

µα(x)− µ(x)
α− 1

dx,

then gradHα[µt](x) = 4µαt (x) (see (Villani, 2009,
Ex.15.6) for the proof) and thus (5) reduces to the back-
ward porous medium equation

∂tµt = −4µαt . (7)

OPEN QUESTION

Can we relate a potential functionalF and an existing train-
ing procedure of deep learning? What is the best discretiza-
tion strategy of a transport map?

2. Width Continuum Limit
The continuum limit with respect to width was developed
in the 1990s. It is a continuum analogy of the shallow neu-
ral network, formulated as a formal limit of the linear com-
bination of functions as below

n∑
j=1

cjσ(aj · x− bj), (aj , bj , cj) ∈ Rm × R× C

→
∫
Rm×R

c(a, b)σ(a · x− b)dλ(a, b), (8)

which is also known as the integral representation of
a neural network. Here σ : R → C is an activa-
tion function, c(a, b) is a continuous analog of cj , and
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dλ(a, b) is an appropriate measure. Typically, σ is ei-
ther Gaussian, sigmoidal function or ReLU; and dλ(a, b)
is either the Lebesgue measure dadb or a Borel measure
|a|−(m−1)dadb.

The integral representation theory is introduced by many
authors (Poggio & Girosi, 1990; Mhaskar & Micchelli,
1992; Leshno et al., 1993; Barron, 1993; Girosi et al.,
1995; Murata, 1996; Candès, 1998; Rubin, 1998) to inves-
tigate how shallow networks work.; and further developed
by Donoho (2002); Le Roux & Bengio (2007); Kůrková
(2012); Sonoda & Murata (2017). These studies are con-
ducted from the standpoint of linear algebra. That is, they
regard cj and σ(aj · x− bj) as coefficients and basis func-
tions respectively.

Today, we can understand that what shallow networks do
is the ridglet expansion of an integrable function f . Note
that it refers only to what they can potentially do and not to
what they actually do.

Linear algebra was appropriate in the age of shallow net-
works. However, it lacks considerations of depth, and
thus it is inadequate to explain why deep networks per-
form better than shallow networks. The depth continuum
limit made a breakthrough by introducing dynamical sys-
tem viewpoint and going beyond what they actually do.

2.1. Ridgelet Analysis

Ridgelet analysis is a well organized framework of the
integral representation theory. The ridgelet transform
Rρf(a, b) of an integrable function f ∈ L1(Rm) with re-
spect to a Schwartz function ρ : R→ C is defined as

Rρf(a, b) := C(a, b)

∫
Rm

f(x)ρ(a · x− b)dx, (9)

for every (a, b) ∈ Rm×R, where C(a, b) is an appropriate
normalizing constant.

We say that ρ and σ are admissible when the integral∫∞
−∞ ρ̂(ζ)σ̂(ζ)|ζ|−mdζ exists and not zero. Here ·̂ denotes

the Fourier transform. A typical choice of ρ is a derivative
of Gaussian function.

When ρ and σ are addmissible, then the reconstruction for-
mula∫

Rm×R
[Rρf(a, b)]σ(a · x− b)dλ(a, b) = f(x), (10)

holds for every f ∈ L1(Rm). That is, if we plug the
ridgelet transform Rρf(a, b) in place of the coefficient
c(a, b) in (8), the integral representation network behaves
as f(x). Because the integral

∫
Rm×R is an idealized limit

of a finite sum
∑n
j=1, the reconstruction formula represents

the universal approximation property of neural networks.

It is intriguing that, in general, there exist infinitely many
different ρ’s that are admissible with the same activation
function σ (see § 6 of Sonoda & Murata (2017) for exam-
ple). It means that there are infinitely many different coef-
ficients c(a, b) that results in the same function f(x). The
backpropagation implicitly choose ρ without control, prob-
ably depending on the initial parameters, network structure
and optimization algorithms.

2.2. Discretization Methods

A constructive discretization method can potentially re-
place the backpropagation. That is, by numerically inte-
grating the reconstruction formula with a finite sum:

LHS of (10) ≈
n∑
j=1

cjσ(aj · x− bj), (11)

we can “synthesize” a neural network that approximates
f(x) without using backpropagation.

The backpropagation results in the so-called black box net-
work in the sense that no one knows how the trained net-
work processes information, because the training result is
simply a local minimizer of a loss function that lacks con-
trol on the network parameters. In contrast, the discretiza-
tion method could provide a white box network because the
training result converges to a unique limit without any loss
of the parameter controllability. The development of a dis-
cretization method with theoretical guarantees such as an
error bound and a convergence guarantee is our important
future work.

Today we have many discretization strategies: regular
grid (frame) and atomic decomposition (Donoho, 1999),
Monte Carlo integration (Sonoda & Murata, 2014), random
feature expansion and/or kernel quadrature (Bach, 2017).
Probabilistic numerics (Briol et al., 2016) is an emerging
field that aims to unify these methods. Mhaskar (1996)
estimated the approximation error as O(n−s/m) with the
number n of hidden units, input dimensionm, and smooth-
ness parameter (Sobolev order) s.

OPEN QUESTION

Can we really replace backpropagation with discretization?

3. Double Continuum Limit
The double continuum limit is the width continuum limit
of the depth continuum limit. In other words, it reduces to
the ridgelet analysis of a transport map:∫

Rm×R
Rρ[id+ t∇V ](a, b)σ(a · x− b)dλ(a, b) (12)

where id denotes the identity map. Technically, the ridgelet
transform is defined for integrable functions. Hence, we



Double Continuum Limit of Deep Neural Networks

consider a transport map with compact support.

3.1. Ridgelet Transform of Potential Vector Field

We present an integration-by-parts formula for the vector
ridgelet transform. Let K ⊂ Rm be a compact set with
smooth boundary ∂K. Given that a smooth scalar potential
V is supported in K, the ridgelet transform of potential
vector field ∇V is calculated by

Rρ[∇V ](a, b) = −aRρ′ [V ](a, b). (13)

The proof is straitforward as below:

Rρ[∇V ](a, b) = C(a, b)

∫
K

∇V (x)ρ(a · x− b)dx

= C(a, b)

[∫
∂K

V (x)ρ(a · x− b)n(x)dS

− a
∫
K

V (x)ρ′(a · x− b)dx
]

= 0− aRρ′ [V ](a, b).

The LHS of (13) denotes a vector ridgelet transform de-
fined by element-wise mapping, whereas the RHS consists
of a scalar ridgelet transform. We can understand the RHS
given that the network shares common knowledge among
element-wise tasks.

3.2. Example: Autoencoder

As the most fundamental transport map, we consider a
smooth “truncated” autoencoder idr,ε. Denote by Bm(z; r)
a closed ball in Rm with center z and radius r. We assume
that idr,ε is (1) smooth, (2) equal to the identity map id
when it is restricted to Bm(r), and (3) truncated to be sup-
ported in Bm(r + ε) with a small positive number ε > 0.
Let Vr,ε be a smooth function that satisfies

Vr,ε(x) :=


1
2 |x|

2 x ∈ Bm(0; r),

(smooth map) x ∈ B(0; r + ε) \ B(0; r),
0 x /∈ Bm(0; r + ε),

and let

idr,ε := ∇Vr,ε.

Note that we can construct idr,ε and Vr,ε by using molli-
fiers, and thus such maps exist.

The ridgelet transform of the truncated autoencoder is
given by

Rρ[idr,ε](a, b) ≈ −KC(a, b)aρ′(−b) as ε→ 0 (14)

with a certain constantK. See supplementary for the proof.

Therefore, by numerically integrating the integral represen-
tation

−K
∫
Rm×R

aρ′(−b)σ(a · x− b)dadb ≈ idr,0, (15)

we can obtain an autoencoder without backpropagation.

Figure 1 depicts an autoencoder on R2 realized by numeri-
cally integrating (15). Note that we omitted calculating the
normalizing coefficients and rescaled values instead.
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Figure 1. Autoencoder on R2 realized by discretizing the ridgelet
transform of the truncated identity map, without backpropagation.

OPEN QUESTION

According to Mhaskar (1996), the approximation error is
estimated by the Sobolev order s of the transport map
id + t∇V . Can we determine any trade-off relation be-
tween the smoothness s and depth t? Can we estimate the
generalization error?

4. Conclusion
We have provided an overview of depth (1) and width
(8) continuum limits of neural networks, and developed
the double continuum limit (12). We have introduced the
ridgelet transform (13) for potential vector fields, and syn-
thesized an autoencoder (15) without backpropagation. As
suggested in the Wasserstein gradient flow (6), we ex-
pect that what a deep neural network does corresponds
to a ridgelet transform Rρ[id + t∇V ] of a transport map
id+ t∇V that decreases a functional F [µt] of the data dis-
tribution µt. With respect to the double continuum limit,
the development of discretization algorithms in collabora-
tion with probabilistic numerics, estimation of the general-
ization error, are important topics for our future research.
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